Radiosensitization of Pancreatic Cancer Cells In Vitro and In Vivo through Poly (ADP-ribose) Polymerase Inhibition with ABT-888

نویسندگان

  • Richard Tuli
  • Andrew J. Surmak
  • Juvenal Reyes
  • Michael Armour
  • Amy Hacker-Prietz
  • John Wong
  • Theodore L. DeWeese
  • Joseph M. Herman
چکیده

OBJECTIVES To determine whether poly (ADP-ribose) polymerase-1/2 (PARP-1/2) inhibition enhances radiation-induced cytotoxicity of pancreatic adenocarcinoma in vitro and in vivo, and the mechanism by which this occurs. METHODS Pancreatic carcinoma cells were treated with ABT-888, radiation, or both. In vitro cell viability, apoptosis, and PARP activity were measured. Orthotopic xenografts were generated in athymic mice and treated with ABT-888 (25mg/kg), radiation (5Gy), both, or no treatment. Mice were monitored with bioluminescence imaging. RESULTS In vitro, treatment with ABT-888 and radiation led to higher rates of cell death after 8days (P < .01). Co-treatment with 5Gy and 1, 10 or 100μmol/l of ABT-888 led to dose enhancement factors of 1.29, 1.41 and 2.36, respectively. Caspase activity was not significantly increased when treated with ABT-888 (10 μmol/l) alone (1.28-fold, P = .08), but became significant when radiation was added (2.03-fold, P < .01). PARP activity increased post-radiation and was abrogated following co-treatment with ABT-888. In vivo, treatment with ABT-888, radiation or both led to tumor growth inhibition (TGI) of 8, 30 and 39days, and survival at 60days of 0%, 0% and 40%, respectively. CONCLUSIONS ABT-888 with radiation significantly enhanced tumor response in vitro and in vivo. ABT-888 inhibited PAR protein polymerization resulting in dose-dependent feedback up-regulation of PARP and p-ATM suggesting increased DNA damage. This translated into enhancement in TGI and survival with radiation in vivo. In vitro PAR levels correlated with levels of tumor apoptosis suggesting potential as a predictive biomarker. These data are being used to support a Phase I study in locally advanced pancreatic cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potentiation of temozolomide cytotoxicity by poly(ADP)ribose polymerase inhibitor ABT-888 requires a conversion of single-stranded DNA damages to double-stranded DNA breaks.

Poly(ADP-ribose) polymerase (PARP) senses DNA breaks and facilitates DNA repair via the polyADP-ribosylation of various DNA binding and repair proteins. We explored the mechanism of potentiation of temozolomide cytotoxicity by the PARP inhibitor ABT-888. We showed that cells treated with temozolomide need to be exposed to ABT-888 for at least 17 to 24 hours to achieve maximal cytotoxicity. The ...

متن کامل

Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models.

PURPOSE Poly(ADP-ribose) polymerase-1 (PARP-1) is the founding member of a family of enzymes that catalyze the addition of ADP-ribose units to proteins that mediate DNA repair pathways. Ionizing radiation induces DNA strand breaks, suggesting that PARP-1 inhibition may sensitize tumor cells to radiation. EXPERIMENTAL DESIGN We investigated the combination of PARP-1 inhibition with radiation i...

متن کامل

PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression

To overcome cancer cells resistance to pharmacological therapy, the development of new therapeutic approaches becomes urgent. For this purpose, the use of poly(ADP-ribose) polymerase (PARP) inhibitors in combination with other cytotoxic agents could represent an efficacious strategy. Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification that plays a well characterized role in...

متن کامل

ABT-888 confers broad in vivo activity in combination with temozolomide in diverse tumors.

PURPOSE ABT-888, currently in phase 2 trials, is a potent oral poly(ADP-ribose) polymerase inhibitor that enhances the activity of multiple DNA-damaging agents, including temozolomide (TMZ). We investigated ABT-888+TMZ combination therapy in multiple xenograft models representing various human tumors having different responses to TMZ. EXPERIMENTAL DESIGN ABT-888+TMZ efficacy in xenograft tumo...

متن کامل

Poly(ADP-ribose) polymerase inhibitor ABT-888 potentiates the cytotoxic activity of temozolomide in leukemia cells: influence of mismatch repair status and O-methylguanine- DNA methyltransferase activity

The poly(ADP-ribose) polymerase (PARP) inhibitor ABT888 potentiates the antitumor activity of temozolomide (TMZ). TMZ resistance results from increased O-methylguanine-DNA methyltransferase (MGMT) activity and from mismatch repair (MMR) system mutations. We evaluated the relative importance of MGMT activity, MMR deficiency, nonhomologous end joining (NHEJ), and PARP activity in ABT-888 potentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014